

METHOD

The finite difference solution of Laplace's Equation gives an approximation to the exact potential function at a finite number of mesh or nodal points within the given boundaries of the transmission line conductors. If a suitable interpolation formula is used to define an approximate, but continuous potential distribution throughout the region, the associated field energy may be calculated. By the Dirichlet principle, or the principle of minimum potential energy, it is known that this energy is greater than the energy E associated with the exact potential function V . It follows that the calculated capacitance per unit length, which is proportional to the field energy, is greater than the exact capacitance per unit length C .

The characteristic impedance Z_0 of a TEM mode transmission line is given by

$$Z_0 = \sqrt{\frac{L}{C}} = \frac{1}{vC}$$

where L is the inductance per unit length and v is the velocity of propagation. A lower bound on the characteristic impedance has thus been obtained.

The dual problem is defined by interchanging electric conductors (short circuit) and magnetic conductors (open circuits) and substituting the reciprocal of the dielectric constant K_e .

$$C' = \frac{2E'}{V_0'^2}$$

An exact dual potential function V' can be shown to be related to function V of the original problem by the transformation

$$K_e \frac{\partial V}{\partial x} = \frac{\partial V'}{\partial y}, \quad K_e \frac{\partial V}{\partial y} = -\frac{\partial V'}{\partial x}. \quad (1)$$

Hence

$$\begin{aligned} E' &= \frac{\epsilon_0 K_e}{2} \iint_R \left\{ \left(\frac{\partial V}{\partial x} \right)^2 + \left(\frac{\partial V}{\partial y} \right)^2 \right\} dx dy \\ &= \frac{\epsilon_0}{2K_e} \iint_R \left\{ \left(\frac{\partial V'}{\partial y} \right)^2 + \left(\frac{\partial V'}{\partial x} \right)^2 \right\} dx dy \\ &= E' \end{aligned}$$

where E' is the energy in the dual problem and R is the region between the transmission line conductors. Also

Problem Number	Number of Nodes in the Finite Difference Net	Characteristic Impedance (Ohms)			
		Lower Bound	Upper Bound	Mean of Upper and Lower	Exact Impedance*
a	441	36.6942	36.9524	36.8229	36.81132
a	1682	36.7636	36.8656	36.8146	
a	6561	36.7921	36.8316	36.8119	
a	Extrapolated to infinity	36.8026	36.8192	36.8109	
b	363	74.4665	77.8513	76.1213	75.9079
b	1365	75.1702	76.8896	76.0202	
b	5289	75.5271	76.3939	75.9580	
b	Extrapolated to infinity	75.6628	76.2072	75.9340	

* The exact impedance was obtained from a conformal transformation.

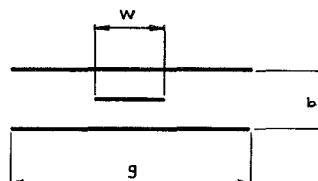


Fig. 1. Strip transmission line.

CONCLUSION

A method of extending a Laplace finite difference solution to obtain an upper and a lower bound on the characteristic impedance of TEM mode transmission lines has been demonstrated.

C. T. CARSON

G. K. CAMBRELL

Weapons Research Establishment
Salisbury, South Australia

REFERENCES

- H. E. Green, "Numerical solution of some important transmission line problems," *IEEE Trans. on Microwave Theory and Techniques*, vol. MTT-13, pp. 676-692, September 1965.
- M. V. Schneider, "Computation of impedance and attenuation of TEM-lines by finite difference methods," *IEEE Trans. on Microwave Theory and Techniques*, vol. MTT-13, pp. 793-800, November 1965.
- H. E. Green, "The numerical calculation of the characteristic impedance, propagation constant and the equivalent circuits of obstacles in T.E.M. mode transmission lines," Weapons Research Estab., Rept. PAD14, Salisbury, South Australia.
- G. K. Cambrell, Weapons Research Estab., Rept. in preparation, Salisbury, South Australia.
- R. Courant and D. Hilbert, *Methods of Mathematical Physics*. New York: Interscience, 1953, ch. 4.
- R. Southwell, *Relaxation Methods in Theoretical Physics*. New York: Oxford, 1946, ch. 5.

Correction to "General Four-Resonator Filters at Microwave Frequencies"

R. M. Kurzrok, author of the above,¹ has called the following to the attention of the Editor.

On page 296, the first sentence below (4) should have read:

"Letting $|w| = 2.75$ and using (4), a theoretical valley insertion loss of 34.4 dB is obtained."

R. M. KURZROK
RCA Commun. Systems Lab.
New York, N.Y.

Manuscript received July 8, 1966.
¹ R. M. Kurzrok, *IEEE Trans. on Microwave Theory and Techniques (Correspondence)*, vol. MTT-14, pp. 295-296, June 1966.

Addendum to Analysis and Exact Synthesis of Cascaded Commensurate Transmission-Line C-Section All-Pass Networks

In a previous publication [1] a method for the exact synthesis of cascaded commensurate transmission-line C-section all-pass networks was presented. In the general case of n sections, the synthesis procedure requires the solution of a set of n simultaneous linear equations before extracting the even-mode impedances of the coupled lines